

TAILORING THE CATALYTIC FEATURES OF 3D HYBRID SYSTEMS FOR ONE-POT CO₂-TO-DME HYDROGENATION BY DIRECT INK WRITING

<u>Serena Todaro</u>, Alessandro Cajumi, Catia Cannilla, Francesco Frusteri, Giuseppe Bonura

XVI Italian Congress of Zeolites Science and Technology

AIZ 2023 =

- Carbon Capture and Utilization technologies (CCU)
- DME: a multipurpose chemical & a fuel
- Conventional two-step processes
- Integrated one-step hydrogenation CO₂-to-DME
- Catalyst design, formulations and structures
- Conclusions and open issues

AIZ 2023 21–23 September 2023, Salerno

The World's Greatest Environmental Challenge

CCU strategies for a neutral CO₂ footprint

NEED FOR GREEN H₂

AIZ 2023

DME, a valuable future fuel

<u>Properties</u>

- High cetane number
- High efficiency of combustion
- Low-emission of NO_x , SO_x and CO

<u>Applications</u>

- LPG alternative
- Transportation fuel
- Power generation

Property	Unit	DME	Diesel
Carbon content	mass%	52.2	86
Hydrogen content	mass%	1–3	14
Öxygen content	mass%	34.8	0
Carbon-to-hydrogen ratio	-	0.337	0.516
Liquid density	kg/m ³	667	831
Cetane number	-	>55	40-50
Autoignition temperature	K	508	523
Stoichiometric air/fuel mass ratio	-	9.6	14.6
Normal boiling point	K	248.1	450-643
Enthalpy of vaporization	kJ/kg	467.1	300
Lower heating value	MJ/kg	27.6	42.5
Ignition limits	vol% in air	3.4/18.6	0.6/6.5
Elastic Modulus	N/m^2	6.37×10^{8}	$14.86 imes 10^8$
Liquid kinematic viscosity	cSt	< 0.1	3
Surface tension (at 298 K)	N/m	0.012	0.027
Vapour pressure (at 298 K)	kPa	530	<10

Catizzone et al., Molecules 2018, 23(1), 31

Conventional two-steps process

AIZ 2023

Thermodynamics of CO₂ hydrogenation

Catizzone et al., Molecules 2018, 23(1), 31

Reactions involved

$CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O$	$\Delta \tilde{H}_{R}^{o} = -49.4 k J \cdot \left(mol_{MetOH} \right)^{-1}$
rWGS $CO_2 + H_2 \Leftrightarrow CO + H_2O$	$\Delta \tilde{H}_{R}^{\circ} = +41.2 kJ \cdot (mol)^{-1}$
$2CH_{3}OH \Leftrightarrow CH_{3}OCH_{3} + H_{2}O$	$\Delta \tilde{H}_{R}^{\circ} = -24kJ \cdot \left(mol_{DME}\right)^{-1}$
$CO + 2H_2 \Leftrightarrow CH_3OH$	$\Delta \tilde{H}_{R}^{o} = -90 kJ \cdot \left(mol_{MetOH} \right)^{-1}$
$2CO_2 + 6H_2 \Leftrightarrow CH_3OCH_3 + 3H_2O$	$\Delta \tilde{H}_{R}^{o} = -122 k J \cdot \left(mol_{DME} \right)^{-1}$

21–23 September 2023, Salerno

AIZ 2023

Design and synthesis of hybrid catalyst

Combination of metal/oxides and acidic functionalities in a single solid system

AIZ 2023 21–23 September 2023, Salerno

Design and synthesis of hybrid catalyst

Gel oxalate coprecipitation method

Good homogeneity of metallic precursors, with long-range distribution of elements per unit of zeolite surface

Bonura et al., Appl. Catal., B 176 (2015) 522-531.

21–23 September 2023, Salerno

AIZ 2023

Printing Strategies for Catalysts : Material Extrusion

- b) Fused Deposition Modeling (FDM)
- c) Selective Laser Melting (SLM)
- d) Stereolithography (SLA)

3D printing technologies for hybrid catalysts

Preparation of catalytic inks

Binders

- Polyethylenimine (PEI)
- *hydroxypropylmethyl* cellulose (HPMC)
- Methyl cellulose (MC)
- Bentonite

catalytic ink/paste

Robocasting extrusion-based 3D-printing

Mechanical strength of 3D monolith

Compression testing machine

Sample	Ε	σ _{max}
	(MPa)	(MPa)
CZA-Z PEI	0.125 ± 0.002	0.25
CZA-Z HPMC	0.169 ± 0.002	0.31
CZA-Z MC	0.201 ± 0.001	0.67

AIZ 2023

Catalytic Testing

CO₂ Hydrogenation plant

AIZ 2023 21–23 September 2023, Salerno

Conclusions

- In line with the current policies on CCU, the development of a catalytic process for the direct hydrogenation of CO₂ to DME over hybrid systems is feasible.
- Hybrid catalysis holds the potential to integrate equilibrium-limited cascade reactions in one single reactor, so to deliver new process chains at higher conversion rate and productivity than conventional multi-step processes
- Once found the proper combination among ink-paste composition, 3D model and annealing treatments, the robocasting technique shows all its effectiveness, offering an alternative, cost effective and facile approach to fabricate structured catalysts
- The tunability of structural, chemical and morphological properties was seen to comprehensively mirror the features of conventional powdered catalysts used in CO₂ utilization technologies.

Open issues

- Operation at lower temperature (< 200 °C) for high selectivity to DME
- Need for novel active phases alternative to Cu
- Optimization of 3D design (number of layers, thickness of layers, ...)
- Reactor design (multi-tubular configurations, recycle set-up, ...)

AIZ 2023

http://www.itae.cnr.it

Acknowledgements

Francesco FRUSTERI Research Manager

Catia CANNILLA Senior Researcher

Giuseppe BONURA Senior Researcher

Aldo MEZZAPICA Lab Technician

Serena TODARO Researcher

Giosuè GIACOPPO Eng. Researcher

Alessandro CAJUMI PhD Student

