H2020 CCUS/Alternative fuels workshop CINEA, 23/24 September 2021

CO₂ Utilisation via 3D printed reactor and solid oxide cell technologies

Vesna Middelkoop, Lamiaa Biaz, Adriana Diaz

CO'FOKUS

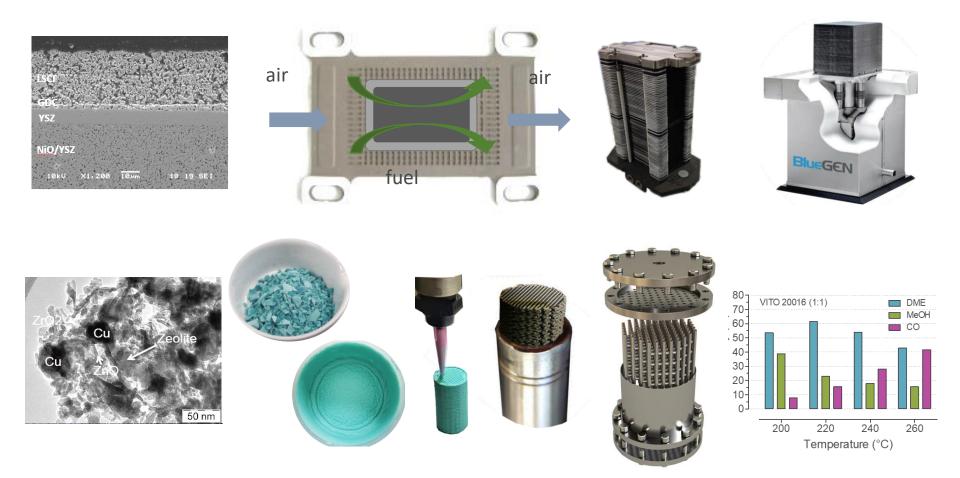
www.co2fokus.eu

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

info@co2fokus.eu

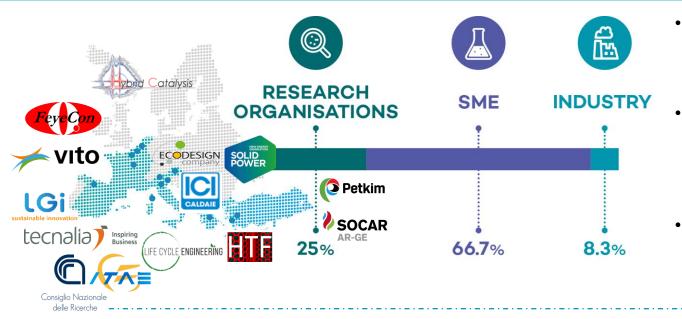
The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

Key Performance Indicators (KPI)	State-of-art	CO2Fokus
Energy efficiency (MJ/ton) DME	2300#	20-30% reduction
Catalyst & reactor design	TRL 3-4	TRL 6
Catalyst durability (hrs)	10 ²	10 ³
Pressure (bar)	30-70	30
Temperature (°C)	280	250
CO ₂ /H ₂ feed (N L/h) 4.5 kW stack	30/100	500/1500 or larger by numbering up
DME yield (%)	20-25	>30 (multichannel reactor)
CO_2 conversion (%), H ₂ conversion	30	>30, 60
Overall H_2 conversion (%)	50	50

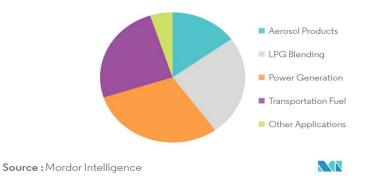

A cutting-edge technology to directly convert industrial CO₂ into DME using:

- 3D printed multichannel reactors
- solid oxide electrolyser
- integrating them in industrial environment with CO₂ point source at end-user facilities

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061



Expected impact


The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

Forging a long-term partnership among the partners and stakeholders

- Leadership in developing materials and systems that provide modular sustainable solutions
- strengthening cross-sectoral collaboration along the value chain

Dimethyl ether Market, Volume (%), by Application, Global, 2019

DME usages

www.co2fokus.eu

Δ

info@co2fokus.eu

Dissemination/communication activities

PARTNERS

DME 1

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

Greenhouse ga_{ses}

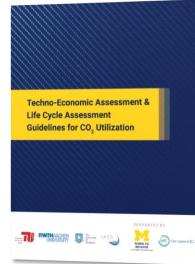
Project website, newsletter, video, events

ABOUT ~ EVENT&NEWS ~ DISSEMINATION ~

CO₂ UTILISATION FOCUSED ON MARKET RELEVANT DIMETHYL ETHER PRODUCTION, VIA 3D PRINTED REACTOR - AND SOLID **OXIDE CELL BASED TECHNOLOGIES**

H2020 PROJECT

KUSPotential ideas for collaboration with other projects



The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

• Further collaboration with CINEA-funded sister projects and beyond successful example: online CCU Workshop, Feb 2021

- Joint CCS/CCU/Alternative Fuels Workshops and stakeholder engagement including final project conference
- Analysis of the business environment: market trends, opportunities and barriers to market entry, stakeholders' analysis, PESTEL analyses
- Joint aspects of Techno-Economic Assessment & Life Cycle Assessment based on Guidelines for CO2 Utilization (v1.1) from the Global CO2 Initiative, University of Michigan: https://deepblue.lib.umich.edu/handle/2027.42/162573

Looking forward to interfacing with other sister projects!!

Any questions, speak to:

vesna.middelkoop@vito.be lamiaa.biaz@lgi-consulting.com diaz@ecodesign-company.com

This document reflects only the authors' view and the Innovation and Networks Executive Agency (INEA) and the European Commission are not responsible for any use that may be made of the information it contains.

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 838061

info@co2fokus.eu